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Abstract
We investigate the properties of three entanglement measures that quantify
the statistical distinguishability of a given state with the closest disentangled
state that has the same reductions as the primary state. In particular, we
concentrate on the relative entropy of entanglement with reversed entries. We
show that this quantity is an entanglement monotone which is strongly additive,
thereby demonstrating that monotonicity under local quantum operations and
strong additivity are compatible in principle. In accordance with the presented
statistical interpretation which is provided, this entanglement monotone,
however, has the property that it diverges on pure states, with the consequence
that it cannot distinguish the degree of entanglement of different pure states.
We also prove that the relative entropy of entanglement with respect to the set
of disentangled states that have identical reductions to the primary state is an
entanglement monotone. We finally investigate the trace-norm measure and
demonstrate that it is also a proper entanglement monotone.

PACS number: 03.67.Hk

1. Introduction

Quantum entanglement arises as a joint consequence of the superposition principle and the
tensor product structure of the quantum-mechanicalstate space of composite quantum systems.
One of the main concerns of a theory of quantum entanglement is to find mathematical tools
that are capable of appropriately quantifying the extent to which composite quantum systems
are entangled. Entanglement measures are functionals that are constructed to serve that
purpose [1–16]. Initially it was hoped for that a number of natural requirements reflecting the
properties of quantum entanglement would be sufficient to establish a unique functional that
quantifies entanglement in bi-partite quantum systems [4]. These requirements are the non-
increase (monotonicity) of the functional under local operations and classical communication,
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the convexity of the functional (which amounts to stating that the loss of classical information
does not increase entanglement) and the asymptotic continuity. Indeed, for pure quantum
states these contraints (irrespective of convexity) essentially define a unique measure of
entanglement. This uniqueness originates from the fact that pure-state entanglement can
asymptotically be manipulated in a reversible manner [3] under local operations with classical
communication (LOCC). However, for mixed states there is no such unique measure of
entanglement, at least not under LOCC (see however4 [17]). Instead, it depends very much
on the physical task underlying the quantification procedure what degree of entanglement is
associated with a given state. The distillable entanglement grasps the resource character of
entanglement in mathematical form: it states how many maximally entangled two-qubit pairs
can asymptotically be extracted from a supply of identically prepared quantum systems [3, 5].
The entanglement of formation [3, 6]—or rather its asymptotic version, the entanglement cost
under LOCC [7, 19]—quantifies the number of maximally entangled two-qubit pairs that are
needed in an asymptotic preparation procedure of a given state.

The relative entropy of entanglement [8–13] is an intermediate measure: it has an
interpretation in terms of statistical distinguishability of a given state of the closest
‘disentangled’ state. This set of ‘disentangled’ states could be the set of separable states,
or the set of states with a positive partial transpose (PPT states). The relative entropy of
entanglement quantifies, roughly speaking, to what minimal degree a machine performing
quantum measurements could tell the difference between a given state and any disentangled
state [8].

It is not unthinkable that the optimal disentangled state may already be distinguishable
from the primary state using selective local operations, rather than global ones. Yet, it would
be interesting to see what measures of entanglement would arise if one considered only those
disentangled states that cannot be distinguished locally from the primary state, specifically
that both states have identical reductions with respect to both parts of the bi-partite quantum
system. In this sense one asks for the degree to which the two states can be distinguished in a
genuinely non-local manner.

It is the purpose of this paper to pursue this programme. We will discuss three different
entanglement measures that are related to this distinguishability problem. Each of these
entanglement measures is based on a different state space distance measure, namely on the
relative entropy, the relative entropy with interchanged arguments and the trace-norm distance.
The properties of these entanglement measures have not been studied so far. We will show
that these three quantities are entanglement monotones, thereby qualifying them as proper
measures of entanglement.

An interesting byproduct of this work is the result that the relative entropy of entanglement
with interchanged arguments is strongly additive, which means that

E(σ ⊗ ρ) = E(σ) + E(ρ) (1)

for all states ρ and σ . Strong additivity implies weak additivity, i.e. E(ρ⊗n) = nE(ρ) for
all states ρ and all n ∈ N. If one can interpret an entanglement measure as a kind of cost
function, weak additivity can be interpreted as the impossibility to get a ‘wholesale discount’
on a state. Many measures of entanglement are known to be subadditive, such as the relative
entropy of entanglement and the non-asymptotic entanglement of formation. Furthermore, all
regularized asymptotic versions of entanglement measures are, by definition, weakly additive.

4 Under PPT operations, that is, quantum operations preserving the positivity of the partial transpose, it is an open
question whether there exists a unique measure of entanglement [17, 18]. In fact, there exist truly mixed states for
which asymptotic state manipulation under PPT operations can be shown to be reversible [17], which points towards
the possibility of having a unique measure of entanglement under PPT operations.
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As no strongly additive measure of entanglement has been found so far, one might be led to
doubt whether the requirements of (i) monotonicity, (ii) strong additivity and (iii) convexity
are compatible at all. We will show, however, that the relative entropy of entanglement with
interchanged arguments, and taken with respect to the set of disentangled states with the same
reductions as the primary state, obeys each one of these three requirements, proving that there
is no a priori incompatibility between them. It has to be noted, though, that this result is of a
rather technical nature, as this measure of entanglement, while being physically meaningful,
is not very practical: it yields infinity for any pure entangled state.

2. Notation and definitions

In this work we will consider bi-partite systems consisting of parts A and B, each of which
is equipped with a finite-dimensional Hilbert space. The set of density operators of the joint
system will be denoted as S(H). Let D(H) be either the set of separable states or the set of
PPT states, which is the subset of S(H) which consists of the states σ for which the partial
transpose σ� is a positive operator. In the following, we will consider the proper subset
Dσ (H) ⊂ D(H) which consists of all those separable states (or PPT states) that are locally
identical to σ ,

Dσ (H) := {ρ ∈ D(H) : ρA = σA, ρB = σB}. (2)

In this definition, subscripts A and B denote state reductions to the subsystems A and B,
respectively. The quantities that will be considered in this paper are all distance measures with
respect to this set:

EA(σ) := inf
ρ∈Dσ (H)

S(ρ‖σ) (3)

EM(σ) := inf
ρ∈Dσ (H)

S(σ‖ρ) (4)

ET (σ) := inf
ρ∈Dσ (H)

‖ρ − σ‖1 (5)

where

S(ρ‖σ) = tr[ρ log2 ρ − ρ log2 σ ] (6)

is the relative entropy [20, 21], and ‖.‖1 stands for the trace norm [22].
The quantityEM in equation (4) is the relative entropy of entanglement [8, 9] of a state σ

with respect to the set Dσ (H). The original relative entropy of entanglement with respect to the
set D(H) (meaning either separable or PPT states) is an entanglement measure that has been
extensively studied in the literature [8, 9]. Initially formulated as a quantity for bi-partite finite
dimensional systems, it has later been generalized to the asymptotic [10], the multi-partite
[12] and the infinite-dimensional setting [13]. EA in equation (3) is essentially the relative
entropy with reversed entries, first mentioned in [8]. The particular property of this quantity
is that it is strongly additive. The quantity ET in equation (5) is a distance measure based on
the trace norm. All quantities are related to the minimal degree to which a given bi-partite
state σ can be distinguished from any state taken from D(H) that cannot be distinguished by
purely local means with operations in A or B only. This statement will be made more precise
in section 6.

The properties of EA,EM and ET that will be investigated consist of the following
well-known list of (non-asymptotic) properties of proper entanglement measures [3, 8, 15,
16, 4]:
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(i) If σ ∈ S(H) is separable, then E(σ) = 0.
(ii) There exists a σ ∈ S(H) for which E(σ) > 0.

(iii) Convexity: Mixing of states does not increase entanglement: for all λ ∈ [0, 1] and all
σ1, σ2 ∈ S(H)

E(λσ1 + (1 − λ)σ2) � λE(σ1) + (1 − λ)E(σ2). (7)

(iv) Monotonicity under local operations: Entanglement cannot increase on average under
local operations: if one performs a local operation in system A leading to states σi with
respective probability pi, i = 1, . . . , N , then

E(σ) �
N∑

i=1

piE(σi). (8)

(v) Strong additivity: Let H have the structure H(1) ⊗ H(2), with

H(1) = H(1)
A ⊗ H(1)

B H(2) = H(2)
A ⊗ H(2)

B . (9)

For all σ (1) ∈ S(H(1)) and σ (2) ∈ S(H(2)) then

E(σ (1) ⊗ σ (2)) = E(σ (1)) + E(σ (2)). (10)

For a thorough discussion of these properties, see [1, 4]. Functionals with the properties
(i)–(iv) will as usual be denoted as entanglement montones.

3. Properties of EA

The first statement that we will prove is the property of EA to be an entanglement monotone
in the above-mentioned sense, the second will be the strong additivity property.

Proposition 1. EA : S(H) −→ R
+ ∪ {∞} with

EA(σ) := inf
ρ∈Dσ (H)

S(ρ‖σ). (11)

has the properties (i)–(iv), i.e., it is an entanglement monotone.

Proof. Properties (i) and (ii) are obvious from the definition, given that the relative entropy is
not negative for all pairs of states. Let σ1, σ2 ∈ S(H), and let ρ1 ∈ Dσ1(H) and ρ2 ∈ Dσ2(H)
be (not uniquely defined) states that are ‘closest’ to σ1 and σ2, respectively, in the sense that
for i = 1, 2

EA(σi) = S(ρi‖σi). (12)

Such states always exist, due to the lower-semicontinuity of the relative entropy, and due to
the fact that the sets Dσ1(H) and Dσ2(H) are compact. Then, for any λ ∈ [0, 1],

λρ1 + (1 − λ)ρ2 ∈ Dλσ1+(1−λ)σ2(H). (13)

The convexity of EA hence follows from the joint convexity of the relative entropy, and one
obtains

λEA(σ1) + (1 − λ)EA(σ2) = λS(ρ1‖σ1) + (1 − λ)S(ρ2‖σ2)

� S(λρ1 + (1 − λ)ρ2‖λσ1 + (1 − λ)σ2). (14)

This is property (iii). The monotonicity ofEA under local operations can be shown as follows:
as mixing can only reduce the degree of entanglement as measured in terms of EA, it is
sufficient to prove that equation (8) holds with
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σi := (Ai ⊗ 11)σ (Ai ⊗ 11)†/pi (15)

pi := tr[(Ai ⊗ 11)σ (Ai ⊗ 11)†] (16)

where Ai, i = 1, . . . , N , are operators satisfying
∑N

i=1A
†
iAi = 11. Let ρ ∈ Dσ (H) be the

state that satisfies EA(σ) = S(ρ‖σ). The state that is obtained after the measurement on ρ is
given by

ρi := (Ai ⊗ 11)ρ(Ai ⊗ 11)†/ tr[(Ai ⊗ 11)ρ(Ai ⊗ 11)†]. (17)

As a consequence of ρ ∈ D(H) also

ρi ∈ Dσi (H) (18)

holds for all i = 1, . . . , N . The Kraus operators act in the Hilbert space of one party only and
therefore,

pi = tr[(Ai ⊗ 11)σ (Ai ⊗ 11)†]

= tr[(Ai ⊗ 11)ρ(Ai ⊗ 11)†]. (19)

This is where the assumption that ρ ∈ Dσ (H) enters the proof. Then

N∑

i=1

piS(ρi‖σi) =
N∑

i=1

tr[(Ai ⊗ 11)ρ(Ai ⊗ 11)†]S(ρi‖σi). (20)

The right-hand side of equation (20) can now be bounded from above by S(ρ‖σ), by virtue of
an inequality of [21] (see also [8]), i.e.,

N∑

i=1

tr[(Ai ⊗ 11)ρ(Ai ⊗ 11)†]S(ρi‖σi) � S(ρ‖σ). (21)

Let ωi ∈ Dσi (H) be the state satisfying EA(σi) = S(ωi‖σi), then

EA(σ) = S(ρ‖σ) �
N∑

i=1

piS(ωi‖σi) =
N∑

i=1

piEA(σi). (22)

This is property (iii), the monotonicity under local operations. �

Proposition 2. EA is strongly additive.

Proof. Let H be a finite-dimensional Hilbert space with the above product structure
H = H(1) ⊗ H(2), and let ρ ∈ S(H). From the conditional expectation property of the
relative entropy [20] with respect to the partial trace projection it follows that

S(ρ‖σ (1) ⊗ σ (2)) = S(tr2[ρ]‖σ (1)) + S(ρ‖ tr2[ρ] ⊗ σ (2))

for all σ (1) ∈ S(H(1)), σ (2) ∈ S(H(2)), such that

S(ρ‖σ (1) ⊗ σ (2)) = S(tr2[ρ]‖σ (1)) + S(tr2[ρ]‖σ (2)) + S(ρ‖ tr2[ρ] ⊗ tr1[ρ]) (23)

and hence

S(ρ‖σ (1) ⊗ σ (2)) � S(tr2[ρ] ⊗ tr1[ρ]‖σ (1) ⊗ σ (2)). (24)

Thus, it is always favourable to replace a given state by the product of its reductions with
respect to 1 and 2.

Moreover, if ρ ∈ Dσ (1)⊗σ (2) (H) for given σ (1) ∈ S(H(1)) and σ (2) ∈ S(H(2)), then also

tr2[ρ] ⊗ tr1[ρ] ∈ Dσ (1)⊗σ (2) (H). (25)
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This in turn implies that any ‘closest’ state ρ ∈ Dσ (1)⊗σ (2) (H) that satisfies EA(σ (1) ⊗ σ (2)) =
S(ρ‖σ (1) ⊗ σ (2)) can be replaced by tr2[ρ] ⊗ tr1[ρ], which again satisfies

EA(σ
(1) ⊗ σ (2)) = S(tr2[ρ] ⊗ tr1[ρ]‖σ (1) ⊗ σ (2)) = S(tr2[ρ]‖σ (1)) + S(tr1[ρ]‖σ (2)). (26)

Therefore,

EA(σ
(1) ⊗ σ (2)) = EA(σ

(1)) + EA(σ
(2)) (27)

meaning that EA is strongly additive. �

According to the statistical interpretation given in section 6, EA has the property to
be divergent for sequences of mixed states converging to pure states, and hence does not
distinguish pure states in their degree of entanglement. Therefore, it is not a very practical
measure of entanglement. However, as it is the only strongly additive entanglement monotone
known to date, it appears fruitful to investigate the conditional expectation property of
the relative entropy of entanglement further in order to try to construct strongly additive
entanglement monotones that have the ability to discriminate between the degrees of
entanglement of pure states.

4. Properties of EM

In this section we will investigate the properties of the quantityEM . First we will show that the
relative entropy of entanglement EM retains all properties of an entanglement monotone. In
other words, the relative entropy of entanglement does not lose this property when additionally
requiring the closest disentangled state to have the same reductions as the primary state. This
observation implies a simplification when it comes to actually evaluating the relative entropy
of entanglement, be it with analytical or with numerical means, because the dimension of the
feasible set is smaller.

Proposition 3. EM : S(H) −→ R
+ with

EM(σ) = inf
ρ∈Dσ (H)

S(σ‖ρ) (28)

is an entanglement monotone with properties (i)–(iv).

Proof. Properties (i), (i) and (iii) can be shown just as before. Again for states σ, σ1, σ2 ∈ S(H)
and ρ ∈ Dσ (H) ρ1 ∈ Dσ1(H), ρ2 ∈ Dσ2(H) it follows that

AρA†/ tr[AρA†] ∈ DAσA†/ tr[AσA†](H) (29)

for all A, and

λρ1 + (1 − λ)ρ2 ∈ Dλσ1+(1−λ)σ2(H). (30)

With the notation of the proof of property (iv),

EM(σ) = S(σ‖ρ) �
N∑

i=1

piS(σi‖ωi) =
N∑

i=1

piEM(σi). (31)
�

Hence, the relative entropy of entanglement is still an entanglement monotone when one
restricts the set of feasible PPT or separable states to those that are locally identical to a given
state. At first it does not even seem obvious thatEM is even different from the original relative
entropy of entanglement. In fact, all states σ considered in [8] satisfy

EM(σ) = inf
ρ∈D(H)

S(σ‖ρ). (32)



Remarks on entanglement measures and non-local state distinguishability 5611

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

−3

Figure 1. The difference ER(ρp)−EM(ρp) for the state ρp as a function of p.

Also, for all UU and OO-symmetric states the two quantities are obviously the same. This
version of the relative entropy of entanglement is strictly sub-additive, just as the relative
entropy of entanglement with respect to the unrestricted sets of separable states or PPT states.
However—on the basis of numerical studies—it turns out that the two quantities are not
identical general, and that there exist states for which the two entanglement measures do not
give the same value5. This means that the disentangled state that can be least distinguished
from a given primary state may have the property that it can already be locally distinguished.

Example 4. We have numerically evaluated the difference ER(ρp) − EM(ρp) between the
(ordinary) relative entropy of entanglement ER and the modified quantity EM for states on
C

2 ⊗ C
2 of the form

ρp := p|ψ〉〈ψ| + (1 − p)11/4, p ∈ [0, 1], (33)

where

|ψ〉 := (|0, 0〉 + (1 + i)|0, 1〉 + (1 − i)|1, 0〉)/51/2. (34)

Figure 1 shows this differenceER(ρp)−EM(ρp) as a function of p ∈ [0, 1]. The difference is
in fact quite small, but significant, given the accuracy of the programme6. Numerical studies
indicate that differences of this order of magnitude are typical for generic quantum states on
C

2 ⊗ C
2.

5. Properties of ET

We now turn to the third quantity ET , the minimal distance of a state σ to the set Dσ (H) with
respect to the trace-norm difference. We will show that also this quantity is a proper measure
5 Reference [23] presents a set of equations that has to be satisfied for the closest state to have identical reductions
as the primary state in the relative entropy of entanglement.
6 The algorithm that has been used to numerically evaluate the two quantities will be discussed elsewhere.
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of entanglement. Other physically interesting quantities of this type have been considered
in the literature, in particular, the minimal Hilbert–Schmidt distance of a state to the set of
PPT states [24–26]. For the latter quantity the resulting minimization problem can in fact be
solved [24]. However, then the resulting quantity is unfortunately no proper entanglement
measure [27].

Proposition 5. ET : S(H) −→ R
+ with

ET (σ) = min
ρ∈Dσ (H)

‖σ − ρ‖1 (35)

is an entanglement monotone with properties (i)–(iv).

Proof. Clearly, ET (ρ) = 0 for a state ρ ∈ D(H). In order to show convexity one can proceed
just as in the proofs of propositions 1 and 3: the convexity then follows from the triangle
inequality for the trace norm. The remaining task is to show that it is monotone under local
operations. Again,

pi = tr[(Ai ⊗ 11)ρ(Ai ⊗ 11)†] = tr[(Ai ⊗ 11)σ (Ai ⊗ 11)†] (36)

for all ρ ∈ Dσ (H), and (Ai ⊗ 11)ρ(Ai ⊗ 11)†/pi ∈ Dσi . Hence,
N∑

i=1

piET (σi) =
N∑

i=1

pi min
ρi∈Dσi (H)

‖(Ai ⊗ 11)σ (Ai ⊗ 11)†/pi − ρi‖1 (37)

and since

min
ρi∈Dσi (H)

‖(Ai ⊗ 11)σ (Ai ⊗ 11)†/pi − ρi‖1

� min
ρ∈Dσ (H)

‖(Ai ⊗ 11)σ (Ai ⊗ 11)† − (Ai ⊗ 11)ρ(Ai ⊗ 11)†‖1

pi
(38)

we arrive at
N∑

i=1

piET (σi) � min
ρ∈Dσ (H)

N∑

i=1

‖(Ai ⊗ 11)(σ − ρ)(Ai ⊗ 11)†‖1. (39)

Property (iv) then follows from lemma 6 (presented below), which yields
N∑

i=1

piET (σi) � min
ρ∈Dσ (H)

N∑

i=1

‖(Ai ⊗ 11)†(Ai ⊗ 11)|σ − ρ|‖1

� min
ρ∈Dσ (H)

N∑

i=1

tr[(Ai ⊗ 11)†(Ai ⊗ 11)|σ − ρ|]

= min
ρ∈Dσ (H)

‖σ − ρ‖1 = ET (σ). (40)

Hence, ET is monotone under local operations. �
Lemma 6. Let A,B be complex n× n matrices, and assume that B = B†. Then

‖ABA†‖1 � ‖A†A|B|‖1 (41)

holds.

Proof. The trace norm‖.‖1 is a unitarily invariant norm, and ABA† is a normal matrix [22].
Hence

‖A(BA†)‖1 � ‖(BA†)A‖1 (42)

(see [22]), and therefore,

‖(BA†)A‖1 = tr[(A†AB†BA†A)1/2] = tr[(A†A|B|2A†A)1/2] = ‖A†A|B|‖1 (43)

which gives rise to equation (41). �
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Hence, ET is a proper entanglement monotone, yet it does not exhibit an additivity
property, and it is not asymptotically continuous on pure states. It should be noted that the
weaker condition ET (E(σ )) � ET (σ) for all trace-preserving maps E corresponding to local
operations with classical communication and all states σ follows immediately from the fact
that the trace norm fulfils

‖E(σ )− E(ρ)‖1 � ‖σ − ρ‖1 (44)

for all trace-preserving completely positive maps E and all states σ, ρ. The Hilbert–Schmidt
norm in turn does not have this property [27].

6. Distance measures and state distinguishability

In this section we will give an interpretation of the three quantities EA,FM and ET in terms
of hypothesis testing. The problem of distinguishing quantum-mechanical states can be
formulated as testing two competing claims, see [28–30]. In this setup one considers a single
dichotomic generalized measurement acting on a state that is known to be either ω or ξ , with
equal a priori probabilities. The measurement is represented by two positive operators F and
11 − F , with F satisfying 0 � F � 11. On the basis of the outcome of the measurement one
can then make the decision to accept either the hypothesis that the state ω has been prepared
(the null-hypothesis), or the hypothesis that the state ξ has been prepared (the alternative
hypothesis). The error probabilities of first and second kinds related to this decision are
given by

α(ω, ξ;F) := tr[ω(11 − F)] (45)

β(ω, ξ;F) := tr[ξF ]. (46)

The trace-norm difference of the two states ω and ξ can be written in terms of these error
probabilities as follows. According to the variational characterization of the trace norm,

‖ω − ξ‖1 = max
X,‖X‖�1

tr[(ω − ξ)X] (47)

where ‖.‖ denotes the standard operator norm [22]. There is a one-to-one relation between
the allowed X appearing here and the set of hypothesis tests: F = (X + 11)/2. Hence,
tr[(ω − ξ)X] = 2 tr[(ω − ξ)F ] implying that the quantity ET can be interpreted as

ET (σ) = 2 inf
ρ∈Dσ (H)

max
E
(1 − α(σ, ρ;F)− β(σ, ρ;F)) (48)

with F any test (0 � F � 11). Due to the restriction ρ ∈ Dσ (H), one compares the primary
state σ only with those separable (PPT) ρ that have the same reductions as σ . Clearly, tests
consisting of tensor products F = FA ⊗ 11 and F = 11 ⊗ FB cannot distinguish such states at
all, as the outcomes will exhibit the same probability distributions for both states.

The quantum hypothesis tests related to ET are restricted to a single measurement on a
single bi-partite quantum system. The quantities FM and EA can in some sense be considered
the asymptotic analogues of ET . The connection between the relative entropy and the error
probabilities in quantum hypothesis testing has been thoroughly discussed in [28–30]. In
the asymptotic setting one considers sequences consisting of tuples of n identically prepared
states, ω⊗n and ξ⊗n, and a sequence of tests {Fn}∞n=0, where 0 � Fn � 11 and Fn operates on
an n-tuple. To every test in the sequence, one can again ascribe two error probabilities:

αn(ω, ξ;Fn) := tr[ω⊗n(11 − Fn)] (49)

βn(ω, ξ;Fn) := tr[ξ⊗nFn]. (50)
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For any ε > 0 define [29]

β∗
n(ω, ξ; ε) := min{βn(Fn) : 0 � Fn � 11, αn(ω, ξ;Fn) < ε}. (51)

It has been shown [29] that for any 0 � ε < 1

lim
n→∞

1

n
logβ∗

n(ε) = −S(ω‖ξ). (52)

This means that if one requires that the error probability of first kind is no larger than ε,
then the error probability of second kind goes to zero according to equation (52). Having
this in mind, the quantity EM can be interpreted as an asymptotic measure of distinguishing
σ ∈ D(H) from the closest ρ ∈ Dσ (H) with the same reductions as σ . In turn,EA is a similar
quantity but with the roles of σ and ρ reversed. The asymmetry comes from the asymmetry
of the roles of the error probabilities of first and second kinds.

Note that, within this interpretation, the divergence ofEAon pure states becomes plausible.
If ξ is pure, choosing the sequence of tests {Fn}∞n=0 with

Fn := 11 − ξ⊗n (53)

yields a βn equal to zero for any n (this can only happen for pure ξ ) and an αn equal to tr[ωξ ]n,
which always becomes smaller than any chosen value of ε > 0 from some finite value of n
onwards (that is, presuming ω �= ξ ). Hence, for any choice of ε there is a finite value of n,
say n(ε), such that β∗

n(ε) = 0 for n � n(ε). Asymptotical convergence of β∗
n(ε) is therefore

faster than exponential so that {logβ∗
n(ε)/n}∞n=1 tends to minus infinity.

7. Summary and conclusion

In this paper we have investigated three variants of the relative entropy of entanglement, all
three of which can be related to the problem of distinguishing a primary state from the closest
disentangled or PPT state that has the same reductions as the primary state. This approach was
motivated by the desire to flesh out the genuinely non-local distinguishability of a primary state
from the closest disentangled state. The three functionals have been found to be legitimate
measures of entanglement. Additionally, one functional has the property of being strongly
additive, thereby showing that monotonicity, convexity and strong additivity are compatible
in principle. This additivity essentially originates from the conditional expectation property
of the relative entropy. In light of this observation it appears interesting to further study
the implications of the conditional expectation property of the relative entropy on quantum
information theory.
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